1	e.g. $6(x-1) (= 6x-6)$			M1	method to find expression for perimeter of hexagon
	e.g. $2(x+5) + 2x - 3 = 4x + 7$			M1	method to find expression for perimeter of triangle
	6x - 6 = $4x + 7$			M1	(dep on at least M1) for equating both expressions
	e.g. $6x - 4x = 7 + 6$			M1	(dep on previous M1 and equation of the form
					ax + b = cx + d) for rearranging the x terms on one
					side and the numerical terms on the other and all
					expansions correct.
		5.5	5	A1	oe (dep on M2)
					Total 5 marks

2	$(AC^2 =) 17^2 - 15^2$		5	M1	
	$(AC =) \sqrt{17^2 - 15^2} (= \sqrt{64} = 8)$			M1	
	$\frac{\pi \times '8'}{2} (= 4\pi = 12.566)$			M1	dep on M2 for $\frac{\pi \times '8'}{2}$ oe or 4π
					12.5663
	'12.566'+ 15 + 17			M1	for '12.566' + 15 + 17 and no additional values
		44.6		A1	for awrt 44.6
					Total 5 marks
Alternative man	rk scheme for 2				
	$\cos^{-1}\left(\frac{15}{17}\right) (= 28.0724) \text{ or } \sin^{-1}\left(\frac{15}{17}\right) (= 61.9275)$		5	M1	for a correct method to find one of the angles
	$15 \times \tan (28.0724)(= 8)$ or $15 \div \tan (61.9275)(= 8)$			M1	
	$\frac{\pi \times '8'}{2} \ (= 4\pi = 12.566)$			M1	dep on M2 for $\frac{\pi \times '8'}{2}$ or 12.5663 or 4π
	"12.566" + 15 + 17			M1	for " 12.566 " + $15 + 17$ and no additional values
		44.6		A1	for awrt 44.6
					Total 5 marks

3	[ADC =] 180 – 98 (= 82)		6	M1	may be seen on diagram
	$[AC^2 =]8^2 + 7.5^2 - 2 \times 8 \times 7.5 \times \cos(98) (= 136.95)$			M1	correct equation for AC or AC^2
	$[AC =]\sqrt{"136.95"}$ or $\sqrt{64 + 56.25 + 16.7}$ (= 11.7) oe			M1	complete method to find AC showing correct order of operations
	eg [[AD =] $\frac{"11.7" \sin 35}{\sin"82"}$ (= 6.77) or [DC =] $\frac{"11.7" \times \sin"63"}{\sin"82"}$ (=10.5)oe (where "82" = 180 - 98, "63" = 180 - "82" - 35)			M1	correct calculation for AD or DC dep on 1 st M1 and 2 nd M1
	eg $[AD =]$ $\frac{"11.7"\sin 35}{\sin"82"}$ and $[DC =]$ $\frac{"11.7"\sin"63"}{\sin"82"}$ oe or $[AD =]$ $\frac{"11.7"\sin 35}{\sin"82"}$ and $[DC =]$ $\sqrt{"11.7"^2 + "6.77"^2 - 2 \times "11.7" \times "6.77" \times \cos"63"}$ $[DC =]$ $\frac{"11.7"\sin"63"}{\sin"82"}$ and $[AD =]$ $\sqrt{"11.7"^2 + "10.5"^2 - 2 \times "11.7" \times "10.5" \times \cos 35}$ Where "63" = 180 - "82" - 35			M1	correct calculations for AD and DC ($AD = 6.77$ DC = 10.5) dep on 1 st M1 and 2 nd M1
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	32.8		A1	accept 32.7 – 32.9
					Total 6 marks

4	$360 - 40 = 320$ or $\frac{320}{360}$ oe		4	M1	
	or $\frac{40}{360} \times 2\pi \times 9 \ (= 6.28)$				
	$\frac{"320"}{360} \times 2\pi \times 9 \ (= 16\pi = 50.26)$			M1	
	or $2\pi \times 9$ - "6.28" (= 50.26)				
	"50.26" + 2 × 9			M1	complete method to find perimeter
		68.3		A1	68.2 to 68.3
					Total 4 marks

5		e.g. $\sin 65 = \frac{16}{4R}$ or $\cos 25 = \frac{16}{4R}$		4	4	M1	for a correct trig ratio for AB or AD
		AD AD					accept 180 – 90 – 65 for 25
		or $\frac{AB}{\sin 90} = \frac{16}{\sin 65}$ or $\tan 65 = \frac{16}{4D}$					
		31170 311103 AD 16					
		or $\tan 25 = \frac{AD}{16}$ or $\frac{AD}{\sin 25} = \frac{16}{\sin 65}$					
		e.g. $(AB =) \frac{16}{\sin 65} (= 17.654)$				M1	for finding AB and AD
		SIII O.J					Allow use of Pythagoras
		or $(AB =) \frac{16}{\cos 25} (= 17.654)$					
		or $(AB =)$ $\frac{16\sin 90}{\sin 65}$ $(= 17.654)$					$(AD =) \sqrt{17.654^2 - 16^2} (= 7.460)$
		or $(AB =)$ $\frac{17.034}{\sin 65}$					
		and					or
		$(AD =) \frac{16}{\tan 65} (= 7.460)$					$(AB =) \sqrt{"7.460"^2 + 16^2} (= 17.654)$
		or $(AD) = 16 \times \tan 25 (= 7.460)$					(AB -) V 7.400 110 (17.054)
		, , , , , , , , , , , , , , , , , , , ,					
		or $(AD =)$ $\frac{16 \sin 25}{\sin 65}$ (= 7.460)					
	•	$("17.654" \times 2) + ("7.460" \times 2)$ oe				M1	for a complete method to find the
		(17.004 \ \ 2) \ (7.400 \ \ \ 2) \ 00				1411	perimeter
			50.2			A1	accept 49.6 – 50.6
							Total 4 mark
6	(b)	$(AB =) \sqrt{(1-4)^2 + (10-2)^2}$			3	M1	
		$(=\sqrt{5^2+12^2})$ (=13))					
		$(BC =) \sqrt{(19-1)^2 + (10-2.5)^2}$				M1	ft their value of a
						1,11	it their value of the
		$(=\sqrt{18^2+7.5^2} (=19.5))$ or					
		$\sqrt{(19-1)^2 + (10 - \text{their } a)^2}$ or					
		1.5 × "13"	65			A1	
			03			AI	
						_	
7		eg $2 \times \pi \times 5.2 (= 32.6\text{ or } \frac{52}{5}\pi)$ oe				3	M1 for finding the whole circumference or the arc length
		5					circumicience of the are length
		67 2 52(600 871)					
		$\frac{67}{360} \times 2 \times \pi \times 5.2 (= 6.08\text{ or } \frac{871}{450}\pi) \text{ oe}$					
		$\frac{67}{360} \times 2 \times \pi \times 5.2 + 2 \times 5.2$ oe					M1 for a complete method
		500	16.5		+		A1 accept 16.4 - 16.5
			10.5				(not in terms of π)
							Total 3 marks
8		$4.3^2 + 6.4^2$ or 59.45				4	M1 for squaring and adding
		$\sqrt{4.3^2 + 6.4^2}$ or $\sqrt{59.45}$				•	M1 dep 1st M1 for square rooting
		$\sqrt{4.3} + 6.4$ or $\sqrt{39.43}$ or $7.71(038)$ or 7.7					
		e.g $('7.71' + 4.3 + 6.4) \times 22$ or					M1 dep M2 for a non-rounded
		'18.4' × 22 (=404.8) or					perimeter × 22
		('8' + 4.3 + 6.4) × 22 or '18.7' × 22 or					or 19×22 accept 20×22 oe
		18.7 × 22 or '19' × 22 or					accept 20 ^ 22 06
	,	'20' × 22					
		-	\$418		-		Al cao
							Total 4 marks

9	$12.8^2 + x^2 = 16^2$ oe or		4	M1 for applying Pythagoras theorem correctly
	$163.84 + x^2 = 256$ or			Allow
	$(x^2 =) 16^2 - 12.8^2 (= 92.16)$ or			$\cos^{-1}\left(\frac{12.8}{16}\right) (=36.9)$ and
	$(x^2 =) 256 - 163.84 (= 92.16)$			16)(555)
	(4 =) 200 10010 (= > 2110)			$\frac{x}{x} = \frac{16}{x}$
				sin(36.9) (sin 90)
,	$(x=)\sqrt{16^2-12.8^2}$ (= $\sqrt{92.16}$) (= 9.6) or			M1 for square rooting
	$(x=)\sqrt{256-163.84} (=\sqrt{92.16}) (=9.6)$			Allow $x = \frac{16}{(\sin 90)} \times \sin(36.9)$
	(12.8 – "9.6") + "9.6" + "9.6" + 16 + 16 + 16 oe			M1 (dep on M1) for a complete method to find
				the perimeter
		70.4		A1 oe e.g. $\frac{352}{5}$
				Total 4 marks
		-		

10	$12 = \frac{1}{2} \times 4.6 \times 8.3 \times \sin ABC \text{ or } \frac{4.6h}{2} = 12 (h = 5.217)$		5	M1	a correct equation for the area to find angle <i>ABC</i> or to find the perpendicular height of the triangle.
	$ABC = \sin^{-1}\left(\frac{12}{\frac{1}{2} \times 4.6 \times 8.3}\right) (= 38.947) \text{ oe or}$ $ABC = \sin^{-1}(0.6286) (= 38.947) \text{ or}$ $ABC = \sin^{-1}\left(\frac{"5.217"}{8.3}\right) (= 38.947) \text{ or}$ $BM^{2} = 8.3^{2} - "5.217"^{2}$			M1	A correct method to find angle ABC or a correct method to find BM^2 where CMB is 90°
	$AC^2 = 4.6^2 + 8.3^2 - 2 \times 4.6 \times 8.3 \times \cos("38.947")$ [allow cos39°] or $AC^2 = 30.6(627)$ $BM = \sqrt{8.3^2 - "5.217"^2}$ (=6.455)			M1	a correct start to the cosine rule to find length AC or a fully correct method for <i>BM</i>
	or $AC = \sqrt{"30.6(6)"}$ or $5.5(3739)$			Al	A correct value for AC which can be the square root of 30.6(6)
	Correct answer scores full marks (unless from obvious incorrect working)	18.4		Al	Allow answers in range 18.4 to 18.45
				·	Total 5 marks

	((() 0 () 100 () 0 () 0 ()				2 1 1 2 1 1 1
11	$(\angle AOC =)132 \times 2(=264)$		3	M1	for method to find angle at the
					centre. Do not award this mark if
					contradicted on the diagram eg if
					obtuse AOC is labelled as 264
-	107		1	3.61	
	$\log \frac{"264"}{} \times 2 \times \pi \times 8.5 \ (= 30.1 \ \text{or} \ \frac{187}{} \pi)$			M1	for a method to find the length of
	$\frac{"264"}{360} \times 2 \times \pi \times 8.5 \ (= 39.1 \text{ or } \frac{187}{15}\pi)$				arc AC or perimeter of the sector
					 allow use of their AOC as long
	or $2 \times \pi \times 8.5 - \frac{360 - 264}{360} \times 2 \times \pi \times 8.5 = 39.1 \text{ or } \frac{187}{15} \pi$				as clearly labelled
	360				
	"264"				
	or $\frac{"264"}{360} \times 2 \times \pi \times 8.5 + 2 \times 8.5$				
	360				
	or $2 \times \pi \times 8.5 - \frac{360 - 264''}{260} \times 2 \times \pi \times 8.5 + 2 \times 8.5$				
	or $2 \times \pi \times 8.5 - \phantom{00000000000000000000000000000000000$				
	200		4	<u></u>	
	Correct answer scores full marks (unless from obvious	56.2		Al	accept 56.1 – 56.2
	incorrect working)				
	•				Total 3 marks

12	eg $5x-1=3x+7.4$ oe or eg $10x-2+48$ or $6x+14.8+48$ or $24+24+5x-1+3x+7.4$ oe		4	M1 a correct equation to find x or a correct expression for the perimeter in terms of x
	x = 4.2			A1 the correct value of x (implies previous mark)
	$2 \times 24 + 2(5 \times ``4.2" - 1)$ oe or $2 \times 24 + 2(3 \times ``4.2" + 7.4)$ oe or $2 \times 24 + (5 \times 4.2 - 1) + (3 \times 4.2 + 7.4)$ oe eg $24 + 24 + 20 + 20$ oe			M1dep on a correct method to find the perimeter – use of positive x from correct working (1st M1 awarded for an equation) and only if used the same measurement for AD and BC
	working required	88		A1 cao dep on either M1 or $x = 4.2$
				Total 4 marks

13	(54 – 24) ÷ 2 (=15) [may be marked on diagram]		5	M1			
	$"15"^2 - (24 \div 2)^2 (= 81)$			M1	ft their "15" (if > 12)		
	[height =] $\sqrt{115^2 - (24 \div 2)^2}$ (= 9)			M1	ft their "15" (if > 12)		
	(24×"9")÷2 oe			M1	figures must be from correct working		
	Correct answer scores full marks (unless from obvious incorrect working)	108		A1	allow 107.9 – 108.1		
	ALTERNATIVES BELOW				Total 5 marks		
13	(54 – 24) ÷ 2 (=15) [may be marked on diagram]		5	M1			
	or $x = \cos^{-1} \left(\frac{"12"}{"15"} \right) (= 36.86)$			M1	ft their "15" (if > 12)		
	or $y = \sin^{-1}\left(\frac{24 \div 2}{"15"}\right) (= 53.13)$				[using Hero's formula S = 0.5×54 (= 27) and]		
	or $A = \cos^{-1} \left(\frac{15^2 + 15^2 - 24^2}{2 \times 15 \times 15} \right) (= 106.2)$				27 × (27 – 24) × (27 – "15") × (27 – "15")		
	or $B = \cos^{-1} \left(\frac{15^2 + 24^2 - 15^2}{2 \times 15 \times 24} \right) (= 36.8)$						
	or "12"tan" 36.86" (= 9) (allow 8.9 for these)			M1	ft M2 for		
	"12" ÷ tan"53.13" (= 9)				their 0.5 × 24 × "15" × sin"36.86" or		
	or "15" × sin "36.86" (= 9)				"15" $0.5 \times$ "15" \times "15" \times sin(2 \times "53.13") or		
	or "15" × cos "53.13" (= 9)				(if> 0.5×"15"×"15"×sin("106.2") or 12) // (127"/(127"/ 24)\(\)(127"/ \)(15"\(\)(127"/ \)(15"\(\)(127"/ \)(15"\(\)(127"/ \)(127"/ \)(15"\(\)(127"/ \)(15"\(\)(127"/ \)(15"\(\)(127"/ \)(15"/ \)(127"/ \)(15"\(\)(127"/ \)(15"/ \)(127"/ \)(15"\(\)(127"/ \)(127"/ \)(15"\(\)(127"/ \)(127"/ \)(15"\(\)(127"/ \)(127		
	(24×"9")÷2 oe			M1	<u>-12)</u> √"27"("27"–24)("27"–"15")("27"–"15")		
	Correct answer scores full marks (unless from obvious incorrect working)	108		A1	allow 107.9 – 108.1		
					Total 5 marks		

14	eg $(AB^2 =)6^2 + 6^2 (= 72)$		5	M1	for a correct start to the method to find AB
	or $\sin 45 = \frac{6}{(AB)}$ or $\cos 45 = \frac{6}{(AB)}$ or				
	or $(AB^2 =)6^2 + 6^2 - 2 \times 6 \times 6 \times \cos 90$				
·	eg $(AB =)\sqrt{6^2 + 6^2} (= \sqrt{72} \text{ or } 6\sqrt{2} \text{ or } 8.48)$			M1	for a complete method to find the length of AB
	or $(AB =)$ $\frac{6}{\sin 45} (= \sqrt{72} = 6\sqrt{2} = 8.48)$				
	or $(AB =)\frac{6}{\cos 45} (= \sqrt{72} = 6\sqrt{2} = 8.48)$ or $(AB =)\sqrt{6^2 + 6^2 - 2 \times 6 \times 6 \times \cos 90}$				
				3.61	(1) (1)
	eg $\pi \times 6 (= 6\pi \text{ or } 18.8)$ or $\pi \times 6 \div 2 (= 3\pi \text{ or } 9.42)$ or $\pi \times "8.48" (= 26.6)$ or $\pi \times "8.48" \div 2 (= 13.3)$			M1	(indep) for a method to find the circumference of one whole circle or the arc length of one semicircle seen (may be embedded)
	eg 2×"3π"+"13.3" or "9.42" + "9.42" + "13.3" or "18.8" + "13.3"			M1	for a complete correct method to find the perimeter of the shape
	Correct answer scores full marks (unless from obvious incorrect working)	32.2		A1	accept answers in the range 32.1 – 32.3
					Total 5 marks

15	7.2 ² + 5.4 ² (= 81)		4	M1	for correct first step using Pythagoras	M1 for reaching one step from the length of AB if using trig eg $(EAB =) \tan^{-1} \left(\frac{5.4}{7.2}\right) (= 36.8)$ and $\sin("36.8") = \frac{5.4}{AB}$
	$\sqrt{7.2^2 + 5.4^2} \ (= 9)$			M1	for complete Pythagoras method to find length of <i>AB/DC</i> check the diagram for sight of 9, <i>DC</i> marked as 9 implies M2	M1 for complete method to find the length of AB/DC eg $\frac{5.4}{\sin("36.8")}$ (= 9)
	7.2 + 5.4 + 6 + "9" + 6 oe		Ī	M1	for a complete method to find the per	rimeter
٠	Correct answer scores full marks (unless from obvious incorrect working)	33.6		A1	oe	
						Total 4 marks